Research interests

My main research interests focus on the study of gravitational waves from the early Universe and the study of primordial magnetic fields.

Gravitational waves from the early Universe

Collaboration publications:

  1. [LGWA Collaboration] (incl. A. Roper Pol), The Lunar Gravitational-wave Antenna: Mission studies and science case, J. Cosmol. Astropart. Phys., 01, 108 (2025), arXiv: 2404.09181.
  2. [LISA Cosmology Working Group], C. Caprini, R. Jinno, M. Lewicki, E. Madge, M. Merchand, G. Nardini, M. Pieroni, A. Roper Pol, V. Vaskonen, Gravitational waves from first-order phase transitions in LISA: Reconstruction pipeline and physics interpretation, J. Cosmol. Astropart. Phys., 10, 020 (2024), arXiv: 2403.03723.
  3. [EPTA and InPTA Collaborations] (incl. A. Roper Pol), The second data release from the European Pulsar Timing Array IV: Implications for massive black holes, dark matter and the early Universe, Astron. Astrophys., 685, A94 (2024), arXiv: 2306.16227.
  4. [LISA Cosmology Working Group] (incl. A. Roper Pol), Cosmology with the Laser Interferometer Space Antenna, Living Rev. Relativ., 26, 5 (2023), arXiv: 2204.05434.

Gravitational waves from first-order phase transitions

Gravitational waves are produced during a first-order phase transition due to the collision of expanding bubbles of the symmetry-broken phase. As they expand, these bubbles drag the expanding primordial plasma leading to the formation of fluid shells around them. When these bubbles collide, they lead to the production of gravitational waves and can be a promising source for current pulsar timing array (PTA) observations and for the planned space-based detector LISA. Both experiments can be used to probe the early Universe at the QCD and the electroweak scale, respectively.

The main sources of gravitational waves from first-order phase transitions:

  • Sound waves: compressional fluid motion in the linearized regime (small fluid perturbations)
  • Turbulence: compressional (acoustic turbulence) and vortical motion of the fluid perturbations in the linear regime
  • Bubble collisions: gradients of the scalar field

Gravitational waves from sound waves

The sound-shell model assumes that the fluid perturbations are a linearized superposition of sound waves produced from each of the bubbles after they have collided. This model allows to reproduce the gravitational wave signal for weak phase transitions when the fluid perturbations are small.

Main collaborators

Chiara Caprini
Chiara
Caprini
Professor at University of Geneva and staff member at CERN
Antonino S. Midiri
Antonino S.
Midiri
PhD student at University of Geneva (2023-)
Simona Procacci
Simona
Procacci
Postdoc at the University of Geneva (2023-2025)
Madeline Salomé
Madeline
Salomé
MS student at EPFL (2024-2025), currently PhD student IP2I Lyon

Publications:

  1. A. Roper Pol, S. Procacci, C. Caprini, Characterization of the gravitational wave spectrum from sound waves within the sound shell model, Phys. Rev. D, 109, 063531 (2024), arXiv: 2308.12943.

Higgsless simulations

Under the Higgsless approach, the fluid motion induced by the phase transitions can be studied by integrating out the dynamics of the scalar field, which occur within the bubble wall thickness, usually many orders of magnitude smaller than the fluid scales. This method allows to reduce the separation of scales between the fluid and the scalar field and capture most of the dynamics of the plasma in a first-order phase transition.

Main collaborators

Chiara Caprini
Chiara
Caprini
Professor at University of Geneva and staff member at CERN
Isak Stomberg
Isak
Stomberg
Postdoc at IFIC, Valencia
Thomas Konstandin
Thomas
Konstandin
Scientist at DESY, Hamburg
Ryusuke Jinno
Ryusuke
Jinno
Professor at Kobe University
Henrique Rubira
Henrique
Rubira
Postdoc at LMU and Cambridge

Publications:

  1. I. Stomberg, A. Roper Pol, Gravitational wave spectra for cosmological phase transitions with non-linear decay of the fluid motion, Contribution to "Proceedings of the 59th Rencontres de Moriond on Gravitation" (2025), arXiv: 2508.04263.
  2. C. Caprini, R. Jinno, T. Konstandin, A. Roper Pol, H. Rubira, I. Stomberg, Gravitational waves from first-order phase transitions: from weak to strong, J. High Energy Phys., 07, 217 (2025), arXiv: 2409.03651.

Gravitational waves from MHD turbulence

Main collaborators

Chiara Caprini
Chiara
Caprini
Professor at University of Geneva and staff member at CERN
Axel Brandenburg
Axel
Brandenburg
Professor at Nordita, KTH, Stockholm University
Tina Kahniashvili
Tina
Kahniashvili
Professor at Carnegie Mellon University
Arthur Kosowsky
Arthur
Kosowsky
Professor at Pittsburgh University
Sayan
Mandal
Lecturer at Carnegie Mellon University

Publications:

  1. A. Roper Pol, S. Mandal, A. Brandenburg, T. Kahniashvili, Polarization of gravitational waves from helical MHD turbulent sources, J. Cosmol. Astropart. Phys., 04, 019 (2022), arXiv: 2107.05356.
  2. A. Roper Pol, Gravitational radiation from MHD turbulence in the early universe, Contribution to "Proceedings of the 55th Rencontres de Moriond on Gravitation" (2021), arXiv: 2105.08287.
  3. A. Brandenburg, G. Gogoberidze, T. Kahniashvili, S. Mandal, A. Roper Pol, N. Shenoy, The scalar, vector, and tensor modes in gravitational wave turbulence simulations, Class. Quantum Grav., 38, 145002 (2021), arXiv: 2103.0114.
  4. T. Kahniashvili, A. Brandenburg, G. Gogoberidze, S. Mandal, A. Roper Pol, Circular polarization of gravitational waves from early-universe helical turbulence, Phys. Rev. Res., 3, 013193 (2021), arXiv: 2011.05556.
  5. A. Roper Pol, S. Mandal, A. Brandenburg, T. Kahniashvili, A. Kosowsky, Numerical simulations of gravitational waves from early-universe turbulence, Phys. Rev. D, 102, 083512 (2020), arXiv: 1903.08585.
  6. A. Roper Pol, A. Brandenburg, T. Kahniashvili, A. Kosowsky, S. Mandal, The timestep constraint in solving the gravitational wave equations sourced by hydromagnetic turbulence, Geophys. Astrophys. Fluid Dyn., 114, 130 (2020), arXiv: 1807.05479.

Propagation of gravitational waves in modified theories of gravity

Main collaborators

Axel Brandenburg
Axel
Brandenburg
Professor at Nordita, KTH, Stockholm University
Yutong He
Yutong
He
PhD student at Stockholm University (2021-2024)

Publications:

  1. Y. He, A. Roper Pol, A. Brandenburg, Modified propagation of gravitational waves from the early radiation era, J. Cosmol. Astropart. Phys., 06, 025 (2023), arXiv: 2212.06082.

Primordial magnetic fields

Multi-messenger searches of primordial magnetic fields and GWs with LISA and PTA

Main collaborators

Chiara Caprini
Chiara
Caprini
Professor at University of Geneva and staff member at CERN
Andrii
Neronov
Professor at APC and EPFL
Dmitri
Semikoz
Professor at APC

Publications:

  1. A. Roper Pol, A. Neronov, C. Caprini, T. Boyer, D. Semikoz, LISA and γ-ray telescopes as multi-messenger probes of a first-order cosmological phase transition, submitted to Astron. Astrophys. (2023), arXiv: 2307.10744.
  2. A. Roper Pol, Gravitational waves from MHD turbulence at the QCD phase transition as a source for Pulsar Timing Arrays, Contribution to "Proceedings of the 56th Rencontres de Moriond on Gravitation" (2022), arXiv: 2205.09261.
  3. A. Roper Pol, C. Caprini, A. Neronov, and D. Semikoz, Gravitational wave signal from primordial magnetic fields in the Pulsar Timing Array frequency band, Phys. Rev. D, 105, 123502 (2022), arXiv: 2201.0563.
  4. A. Neronov, A. Roper Pol, C. Caprini, D. Semikoz, NANOGrav signal from MHD turbulence at the QCD phase transition in the early universe, Phys. Rev. D, 103, L041302 (2021), arXiv: 2009.14174.

Evolution of primordial magnetic fields in the early Universe

Main collaborators

Antonino S. Midiri
Antonino S.
Midiri
PhD student at University of Geneva (2023-)
Axel Brandenburg
Axel
Brandenburg
Professor at Nordita, KTH, Stockholm University
Tina Kahniashvili
Tina
Kahniashvili
Professor at Carnegie Mellon University
Tanmay Vachaspati
Tanmay
Vachaspati
Professor at Arizona State University

Publications:

  1. A. Roper Pol, A. S. Midiri, Relativistic magnetohydrodynamics in the early Universe, submitted to Rep. Prog. Phys. (2025), arXiv: 2501.05732.
  2. T. Kahniashvili, A. Brandenburg, A. Kosowsky, S. Mandal, A. Roper Pol, Magnetism in the Early Universe, Contribution to "Proceedings of the IAU, FM8: New Insights in Extragalactic Magnetic Fields" (2019), arXiv: 1810.11876.
  3. A. Brandenburg, T. Kahniashvili, S. Mandal, A. Roper Pol, A.G. Tevzadze, T. Vachaspati, The dynamo effect in decaying helical turbulence, Phys. Rev. Fluids, 4, 024608 (2019), arXiv: 1710.01628.
  4. A. Brandenburg, T. Kahniashvili, S. Mandal, A. Roper Pol, A.G. Tevzadze, T. Vachaspati, Evolution of hydromagnetic turbulence from the electroweak phase transition, Phys. Rev. D, 96, 123528 (2017), arXiv: 1711.03804.

Primordial magnetic fields from chiral effect

Main collaborators

Axel Brandenburg
Axel
Brandenburg
Professor at Nordita, KTH, Stockholm University
Tina Kahniashvili
Tina
Kahniashvili
Professor at Carnegie Mellon University
Andrew J. Long
Andrew J.
Long
Professor at Rice University
Murman Gurgenidze
Murman
Gurgenidze
PhD student at Carnegie Mellon University

Publications:

  1. M. Gurgenidze, A. J. Long, A. Roper Pol, A. Brandenburg, T. Kahniashvili, Primordial magnetic field from chiral plasma instability with sourcing, submitted to Phys. Rev. D (2025), arXiv: 2512.09177.