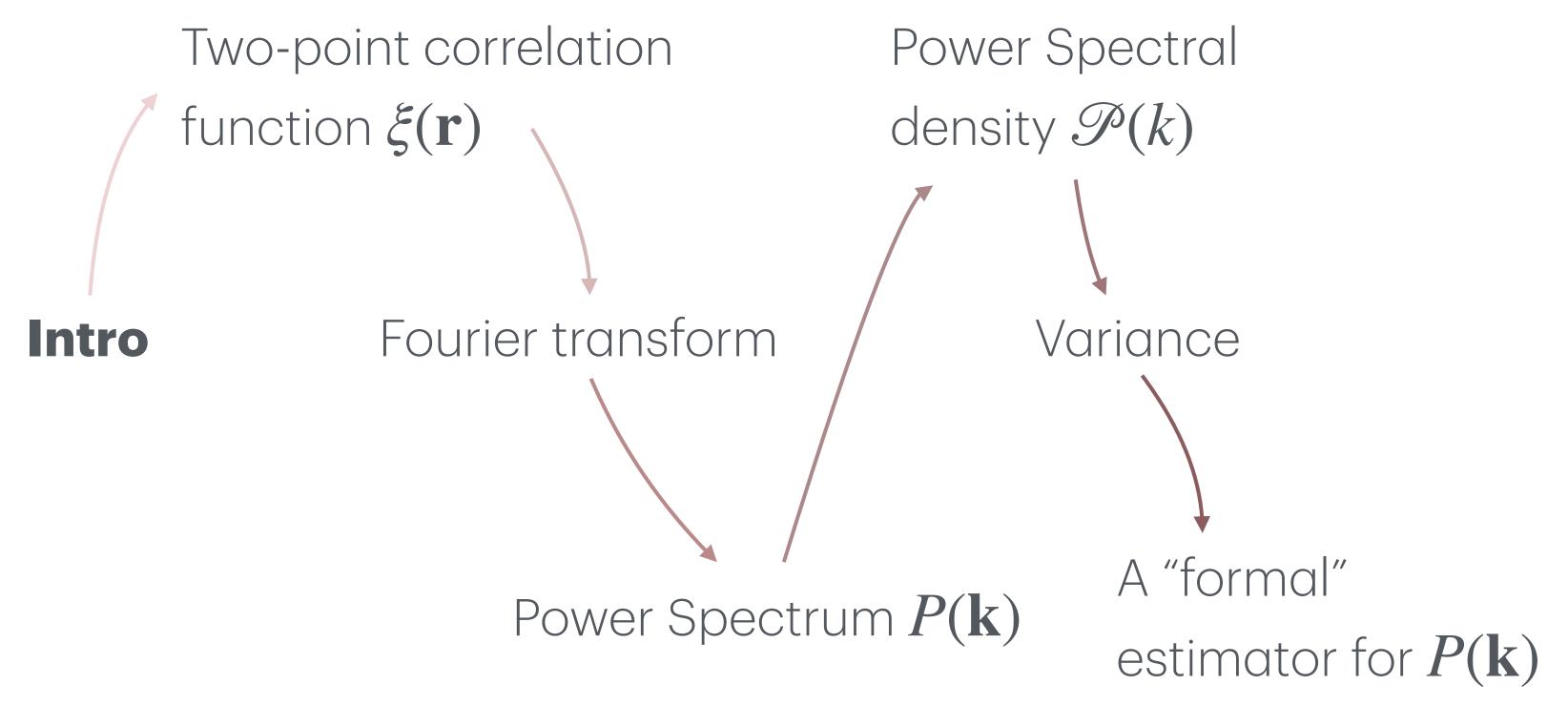
Power spectra and the Fourier Transform

Lecture at the Pencil Code School, CERN

Overview

Continuum



Lattice

Consequences of lattice discretization and periodic boundary conditions

Discrete Fourier
Transform

Power Spectrum

on the lattice

Introduction

- A large number of physical **systems exhibit stochasticity** and **are random realizations:** Examples include turbulent fluids, density perturbations, gravitational wave backgrounds, and acoustic noise fields.
- To quantify such seemingly random systems, it is generally **not meaningful** to **study individual realizations** (i.e., specific field configurations), **but** rather their **statistical properties**.
- In particular, we are often interested in **understanding** how a statistical **quantity** depends on the **scale** of interest for instance, a **length** scale r or wavenumber k, or a time **duration** τ or frequency f.
- This allows us to answer **questions** such as "on what scale are density perturbations largest?" or "at what slope does the noise power decay at high frequencies?"
- The aim of this lecture is to build up the concept of a **power spectrum**: starting from **real-space correlations**, moving to their **Fourier-space representation**, and finally to the **discrete periodic lattice** relevant for numerical simulations.

Continuum

Two-point Correlation Function

- Consider a statistically homogeneous and stochastic scalar field $f(\mathbf{x})$ with zero mean, $\langle f(\mathbf{x}) \rangle = 0$
- The most basic statistical measure of correlations is the two-point correlation function:

$$\xi(\mathbf{r}) = \langle f(\mathbf{x})f(\mathbf{x} + \mathbf{r}) \rangle$$

where $\langle \cdot \rangle$ denotes **ensemble average**, i.e. an average over all realizations, and ξ depends only on \mathbf{r} from homogeneity.

- · Note that we usually do not have access to an ensemble of universes or simulations.
- If the system is assumed to be **statistically homogeneous** (translation invariant), we can **replace** the **ensemble average by** a **spatial average** over the simulation domain (ergodicity):

$$\xi(\mathbf{r}) = \frac{1}{V} \int_{V} d^{3}x f(\mathbf{x}) f(\mathbf{x} + \mathbf{r}).$$

• For isotropic statistics, the correlation function depends only on the magnitude $r=|{f r}|$, $\ \xi({f r})=\xi(r)$

Fourier transform Inverse Fourier transform

$$\tilde{f}(\mathbf{k}) = \int_{\mathbb{R}^3} d^3x \, f(\mathbf{x}) \, e^{-i\mathbf{k}\cdot\mathbf{x}}, \qquad f(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \, \tilde{f}(\mathbf{k}) \, e^{+i\mathbf{k}\cdot\mathbf{x}}$$

We will use this to obtain a definition of the power spectrum.

Power Spectrum

• Consider the ensemble average $\langle \tilde{f}(\mathbf{k})\tilde{f}^*(\mathbf{k}')\rangle$

Fourier transform

Inverse Fourier transform

$$\tilde{f}(\mathbf{k}) = \int_{\mathbb{R}^3} d^3x \, f(\mathbf{x}) \, e^{-i\mathbf{k}\cdot\mathbf{x}}, \qquad f(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \, \tilde{f}(\mathbf{k}) \, e^{+i\mathbf{k}\cdot\mathbf{x}}$$

$$f(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \, \tilde{f}(\mathbf{k}) \, e^{+i\mathbf{k}\cdot\mathbf{x}}$$

Inverse Fourier transform

• Consider the ensemble average $\langle \tilde{f}(\mathbf{k}) \tilde{f}^*(\mathbf{k}') \rangle$

Insert Fourier Transform

• Insert the Fourier transform:

$$\langle \tilde{f}(\mathbf{k})\tilde{f}^*(\mathbf{k}')\rangle = \int d^3x \int d^3x' \, e^{-i\mathbf{k}\cdot\mathbf{x}} \, e^{+i\mathbf{k}'\cdot\mathbf{x}'} \, \langle f(\mathbf{x})f^*(\mathbf{x}')\rangle$$

 $\tilde{f}(\mathbf{k}) = \int_{\mathbb{R}^3} d^3x \, f(\mathbf{x}) \, e^{-i\mathbf{k}\cdot\mathbf{x}}, \qquad f(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \, \tilde{f}(\mathbf{k}) \, e^{+i\mathbf{k}\cdot\mathbf{x}}$

Inverse Fourier transform

• Consider the ensemble average $\langle \tilde{f}(\mathbf{k}) \tilde{f}^*(\mathbf{k}') \rangle$

• Insert the Fourier transform:

$$\tilde{f}(\mathbf{k}) = \int_{\mathbb{R}^3} d^3x \, f(\mathbf{x}) \, e^{-i\mathbf{k}\cdot\mathbf{x}}, \qquad f(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \, \tilde{f}(\mathbf{k}) \, e^{+i\mathbf{k}\cdot\mathbf{x}}$$

Insert Fourier Transform

$$\langle \tilde{f}(\mathbf{k})\tilde{f}^*(\mathbf{k}')\rangle = \int d^3x \int d^3x' \, e^{-i\mathbf{k}\cdot\mathbf{x}} \, e^{+i\mathbf{k}'\cdot\mathbf{x}'} \, \langle f(\mathbf{x})f^*(\mathbf{x}')\rangle$$

Change of variables:
$$= \int d^3x \int d^3r \, e^{-i\mathbf{k}\cdot\mathbf{x}} \, e^{+i\mathbf{k}'\cdot(\mathbf{x}+\mathbf{r})} \, \xi(\mathbf{r})$$
 set $\mathbf{r} = \mathbf{x}' - \mathbf{x}, \ \mathbf{x}' = \mathbf{x} + \mathbf{r}$

Inverse Fourier transform

• Consider the ensemble average $\langle \tilde{f}(\mathbf{k}) \tilde{f}^*(\mathbf{k}') \rangle$

• Insert the Fourier transform:

$$\tilde{f}(\mathbf{k}) = \int_{\mathbb{R}^3} d^3x \, f(\mathbf{x}) \, e^{-i\mathbf{k}\cdot\mathbf{x}}, \qquad f(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \, \tilde{f}(\mathbf{k}) \, e^{+i\mathbf{k}\cdot\mathbf{x}}$$

Insert Fourier Transform

$$\langle \tilde{f}(\mathbf{k})\tilde{f}^*(\mathbf{k}')\rangle = \int d^3x \int d^3x' \, e^{-i\mathbf{k}\cdot\mathbf{x}} \, e^{+i\mathbf{k}'\cdot\mathbf{x}'} \, \langle f(\mathbf{x})f^*(\mathbf{x}')\rangle$$

Change of variables: set
$$\mathbf{r} = \mathbf{x}' - \mathbf{x}$$
, $\mathbf{x}' = \mathbf{x} + \mathbf{r}$ =
$$\int d^3x \int d^3r \, e^{-i\mathbf{k}\cdot\mathbf{x}} \, e^{+i\mathbf{k}'\cdot(\mathbf{x}+\mathbf{r})} \, \xi(\mathbf{r})$$

Homogenity allows factorizing the integrals since
$$\xi = \xi(\mathbf{r})$$

$$= \int d^3x \, e^{-i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{x}} \int d^3r \, e^{+i\mathbf{k}' \cdot \mathbf{r}} \, \xi(\mathbf{r})$$

• Consider the ensemble average $\langle \tilde{f}(\mathbf{k}) \tilde{f}^*(\mathbf{k}') \rangle$

• Insert the Fourier transform:

$$\tilde{f}(\mathbf{k}) = \int_{\mathbb{R}^3} d^3x \, f(\mathbf{x}) \, e^{-i\mathbf{k}\cdot\mathbf{x}}, \qquad f(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \, \tilde{f}(\mathbf{k}) \, e^{+i\mathbf{k}\cdot\mathbf{x}}$$

Insert Fourier Transform

$$\langle \tilde{f}(\mathbf{k})\tilde{f}^*(\mathbf{k}')\rangle = \int d^3x \int d^3x' \, e^{-i\mathbf{k}\cdot\mathbf{x}} \, e^{+i\mathbf{k}'\cdot\mathbf{x}'} \, \langle f(\mathbf{x})f^*(\mathbf{x}')\rangle$$

Change of variables:
$$= \int d^3x \int d^3r \, e^{-i\mathbf{k}\cdot\mathbf{x}} \, e^{+i\mathbf{k}'\cdot(\mathbf{x}+\mathbf{r})} \, \xi(\mathbf{r})$$
 set $\mathbf{r} = \mathbf{x}' - \mathbf{x}, \ \mathbf{x}' = \mathbf{x} + \mathbf{r}$

Homogenity allows factorizing the integrals since
$$\xi = \xi(\mathbf{r})$$

$$= \int d^3x \, e^{-i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{x}} \int d^3r \, e^{+i\mathbf{k}' \cdot \mathbf{r}} \, \xi(\mathbf{r})$$

Identify delta, use that $\xi(-\mathbf{r})=\xi(\mathbf{r}), = (2\pi)^3 \delta^{(3)}(\mathbf{k}-\mathbf{k}')$ $\int d^3r \, e^{-i\mathbf{k}\cdot\mathbf{r}}\,\xi(\mathbf{r}) \;.$ define $P(\mathbf{k})$ as Fourier transform of $\xi(\mathbf{r})$

Different modes are uncorrelated

Inverse Fourier transform

• Consider the ensemble average $\langle \tilde{f}(\mathbf{k}) \tilde{f}^*(\mathbf{k}') \rangle$

 $\tilde{f}(\mathbf{k}) = \int_{\mathbb{R}^3} d^3x \, f(\mathbf{x}) \, e^{-i\mathbf{k}\cdot\mathbf{x}}, \qquad f(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \, \tilde{f}(\mathbf{k}) \, e^{+i\mathbf{k}\cdot\mathbf{x}}$

• Insert the Fourier transform:

Insert Fourier Transform

$$\langle \tilde{f}(\mathbf{k})\tilde{f}^*(\mathbf{k}')\rangle = \int d^3x \int d^3x' \, e^{-i\mathbf{k}\cdot\mathbf{x}} \, e^{+i\mathbf{k}'\cdot\mathbf{x}'} \, \langle f(\mathbf{x})f^*(\mathbf{x}')\rangle$$

Change of variables:
$$= \int d^3x \int d^3r \, e^{-i\mathbf{k}\cdot\mathbf{x}} \, e^{+i\mathbf{k}'\cdot(\mathbf{x}+\mathbf{r})} \, \xi(\mathbf{r})$$
 set $\mathbf{r} = \mathbf{x}' - \mathbf{x}, \ \mathbf{x}' = \mathbf{x} + \mathbf{r}$

Homogenity allows factorizing the integrals since
$$\xi = \xi(\mathbf{r})$$

$$= \int d^3x \, e^{-i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{x}} \int d^3r \, e^{+i\mathbf{k}' \cdot \mathbf{r}} \, \xi(\mathbf{r})$$

Identify delta, use that $\xi(-\mathbf{r}) = \xi(\mathbf{r}), = (2\pi)^3 \delta^{(3)}(\mathbf{k} - \mathbf{k}')$ $\underbrace{\int d^3r \, e^{-i\mathbf{k}\cdot\mathbf{r}} \, \xi(\mathbf{r})}_{P(\mathbf{k})}.$ define $P(\mathbf{k})$ as Fourier transform of $\xi(\mathbf{r})$

• Define the Power Spectrum: $\left\langle \tilde{f}(\mathbf{k})\tilde{f}^*(\mathbf{k}')\right\rangle = (2\pi)^3\delta^{(3)}(\mathbf{k}-\mathbf{k}')\,P(\mathbf{k})$

Interpretation and Variance

The two-point function and Power spectrum are Fourier pairs:

$$\langle f(\mathbf{x})f(\mathbf{x}+\mathbf{r})\rangle = \mathbf{\xi}(\mathbf{r}) = \int \frac{d^3k}{(2\pi)^3} P(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{r}}, \quad P(\mathbf{k}) = \int d^3r \, \xi(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}}$$

• At zero separation ${\bf r}={\bf 0}$: $\left\langle f^2\right\rangle \equiv \xi(0)=\int \frac{d^3k}{(2\pi)^3}\,P({\bf k})$

Interpretation:

The power spectrum measures the contribution to the total variance per 3D Fourier element.

Power spectral density

- If the statistics of the field are isotropic, then the power spectrum depends only on the magnitude of the wavevector: $P(\mathbf{k}) = P(k)$, $k = |\mathbf{k}|$
- Switch to spherical coordinates in k-space: $d^3k=k^2\,dk\,d\Omega$, $\int d\Omega = 4\pi$
- At zero separation ${f r}=0$:

$$\langle f^2 \rangle = \int \frac{d^3k}{(2\pi)^3} P(k)$$

$$= \int_0^\infty \int d\Omega \, \frac{k^2 \, dk}{(2\pi)^3} P(k)$$

$$= \int_0^\infty \frac{4\pi k^2}{(2\pi)^3} P(k) \, dk. \equiv \int_0^\infty \mathcal{P}(k) \, dk.$$

$$\mathcal{P}(k) = \frac{k^2}{2\pi^2} P(k)$$

Interpretation of the Power Spectral Density:

The power spectral density measures the contribution to the total variance per k.

This is a more natural quantity, since it tells us something about the variance at a certain scale.

A formal estimator

- Suppose we set $\mathbf{k} = \mathbf{k}'$ (ill-defined): $\left\langle |\tilde{f}(\mathbf{k})|^2 \right\rangle = (2\pi)^3 \delta^{(3)}(0) \, P(\mathbf{k})$ We may "interpret" this using that, formally, $\delta^{(3)}(0) = \frac{V_{\mathbb{R}}}{(2\pi)^3}$ so that: $P(\mathbf{k}) \sim \frac{\left\langle |\tilde{f}(\mathbf{k})|^2 \right\rangle}{V_{\mathbb{T}}}$
- If we assume **isotropy**, then $P(\mathbf{k}) = P(k)$, and we can construct an **estimator** for P(k) by computing the average over infinitesimal spherical shells of radius k:

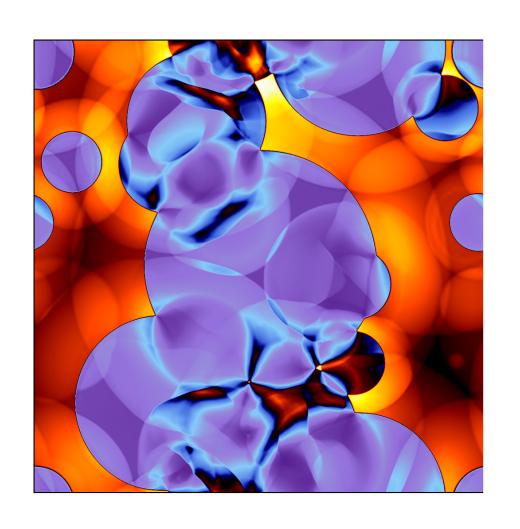
$$P(k) \approx rac{1}{4\pi} \int d\Omega_{\hat{\mathbf{k}}} rac{|\tilde{f}(\mathbf{k})|^2}{V_{\mathbb{R}}} \Big|_{|\mathbf{k}|=k}.$$

• This expression is not well defined due to the infinite volume factor $V_{\mathbb{R}}$, but it is structurally interesting, since, as we shall soon see, we will be able to replace it with the finite simulation volume V when moving to the lattice.

Simulations and the Lattice

Typical simulation

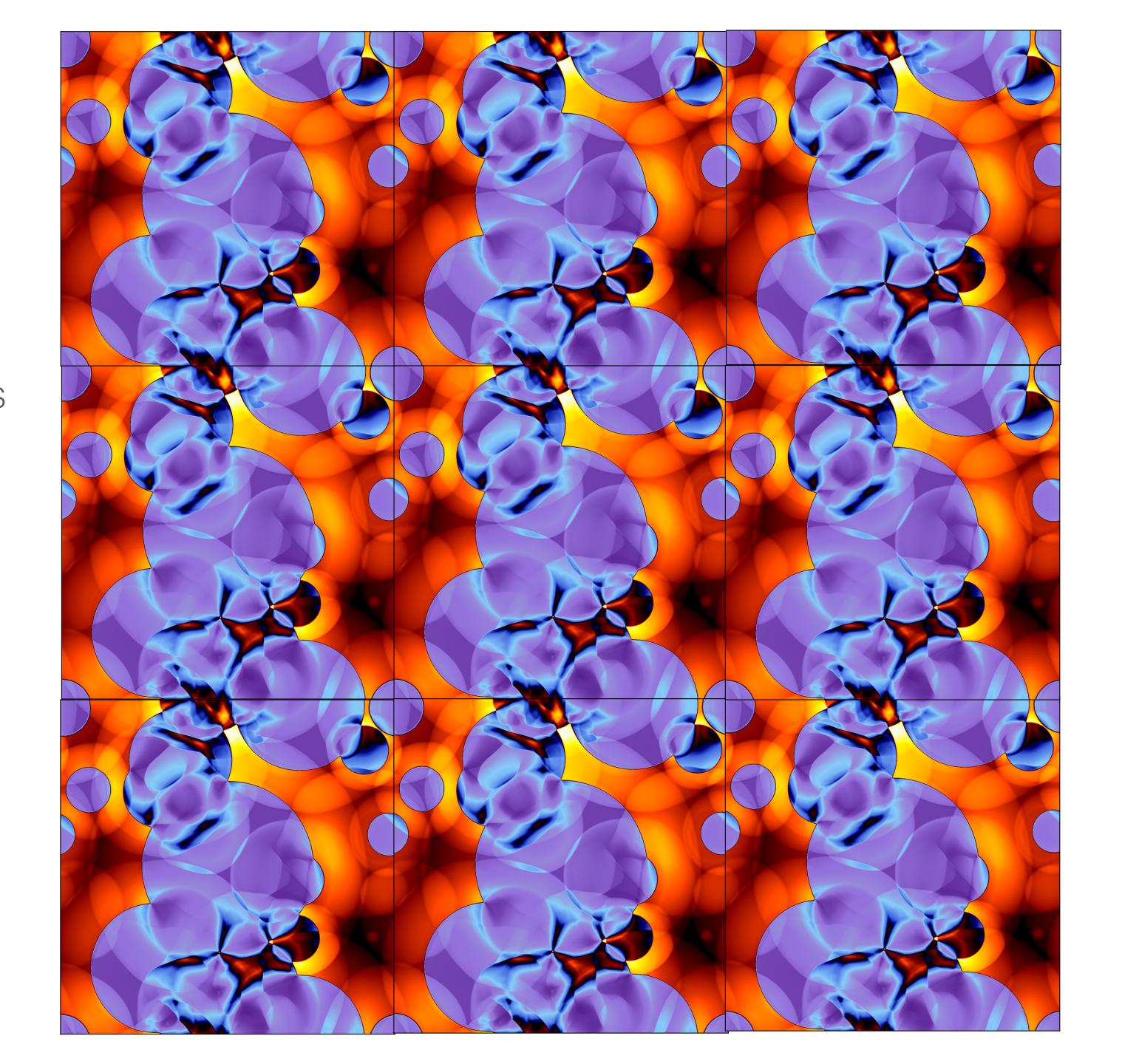
Finite simulation domain $V=L^3$



Discretized lattice. N^3 sites, $\mathbf{x_m} = \Delta x \, \mathbf{m}$

Periodic boundary conditions

The full universe is
an infinite space
of discretized
periodic domains



Consequences?

Consequences of lattice discretization

- Simulations: consider periodic cubic domains $V = [0, L)^3$ with N^3 lattice sites
- Lattice sites are reached as: $\mathbf{x_m} = \Delta x \, \mathbf{m}, \qquad m_i = 0, 1, \dots, N-1$
- Periodicity: $e^{i\mathbf{k}\cdot(\mathbf{x}+L\mathbf{e}_i)}=e^{i\mathbf{k}\cdot\mathbf{x}} \quad \forall i$, which means $e^{ik_iL}=1 \Rightarrow k_iL=2\pi n_i$, $n_i \in \mathbb{Z}$

Hence, allowed wave vectors are discrete:
$$\mathbf{k_n} = \frac{2\pi}{L} \mathbf{n}, \quad \mathbf{n} = (n_x, n_y, n_z) \in \mathbb{Z}^3$$

 $\Delta k = \frac{2\pi}{L}$

Consequences of lattice discretization

- Simulations: consider periodic cubic domains $V=[0,L)^3$ with N^3 lattice sites
- Lattice sites are reached as: $\mathbf{x_m} = \Delta x \, \mathbf{m}, \qquad m_i = 0, 1, \dots, N-1$
- Discrete sampling on lattice sites: Two Fourier modes ${\bf k}$ and ${\bf k}'$ are indistinguishable on this sampling if $e^{i{\bf k}'\cdot{\bf x_m}}=e^{i{\bf k}\cdot{\bf x_m}}$ $\forall {\bf m}$
 - $e^{i(\mathbf{k}'-\mathbf{k})\cdot(\Delta x\,\mathbf{m})} = 1 \quad \forall \,\mathbf{m}$
- Satisfied when

$$\Rightarrow$$
 $(\mathbf{k}' - \mathbf{k}) \cdot (\Delta x \, \mathbf{m}) = 2\pi \, (\boldsymbol{\ell} \cdot \mathbf{m}), \qquad \boldsymbol{\ell} \in \mathbb{Z}^3$

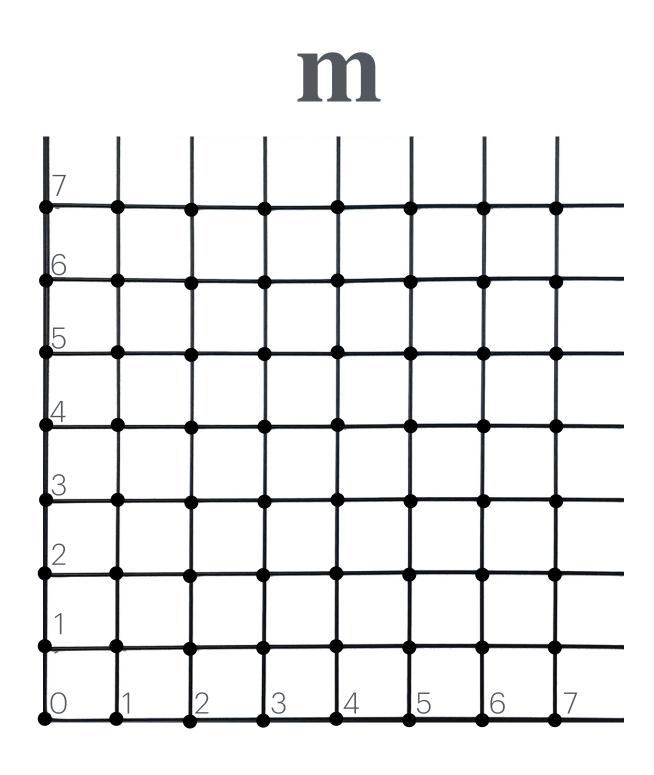
• Hence, the discretely sampled field cannot distinguish between wavevectors separated by integer multiples of $2\pi/\Delta x = N\Delta k$ along any axis, and it is sufficient to restrict to one unique set of N independent modes per direction, for instance $k_i \in \left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right)$

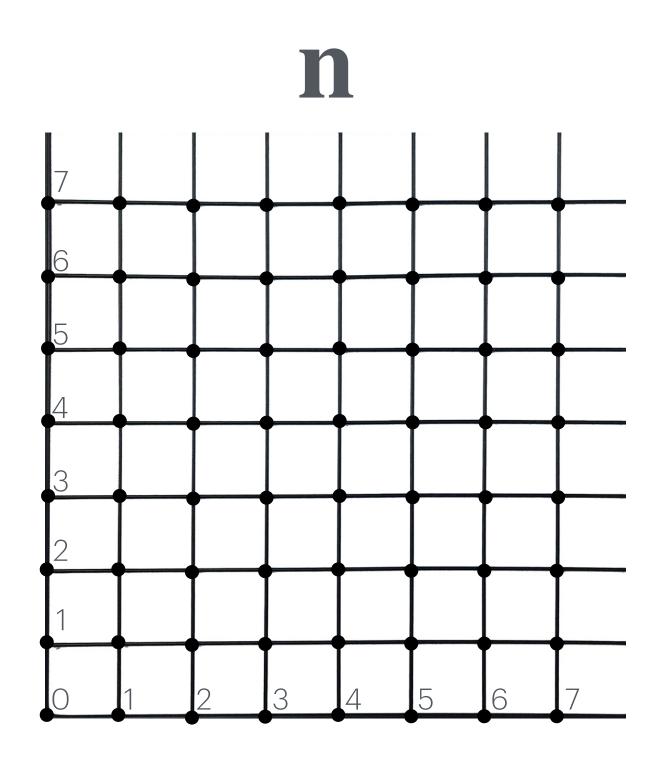
which can be implemented as
$$k_i(\mathbf{n}) = \frac{2\pi}{L} \times \begin{cases} n_i, & 0 \le n_i \le \left\lfloor \frac{N}{2} \right\rfloor, \\ n_i - N, & \left\lfloor \frac{N}{2} \right\rfloor < n_i \le N - 1, \end{cases}$$
 $i \in \{x, y, z\}$

Lattice and dual lattice

Lattice

N=8 Dual lattice

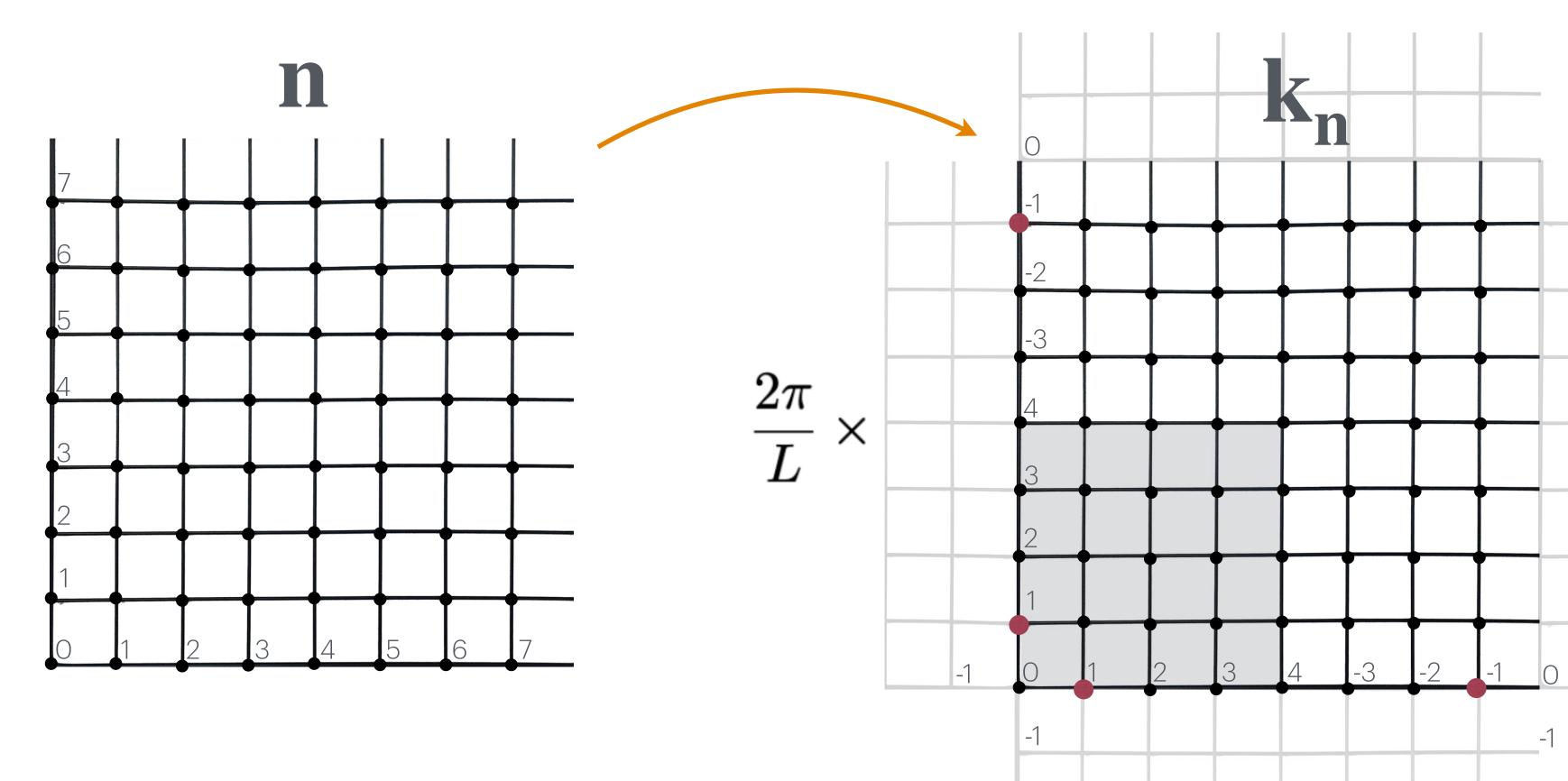




k-mapping in 2D

$$k_i(\mathbf{n}) = \frac{2\pi}{L} \times \begin{cases} n_i, & 0 \le n_i \le \lfloor \frac{N}{2} \rfloor, \\ n_i - N, & \lfloor \frac{N}{2} \rfloor < n_i \le N - 1, \end{cases}$$

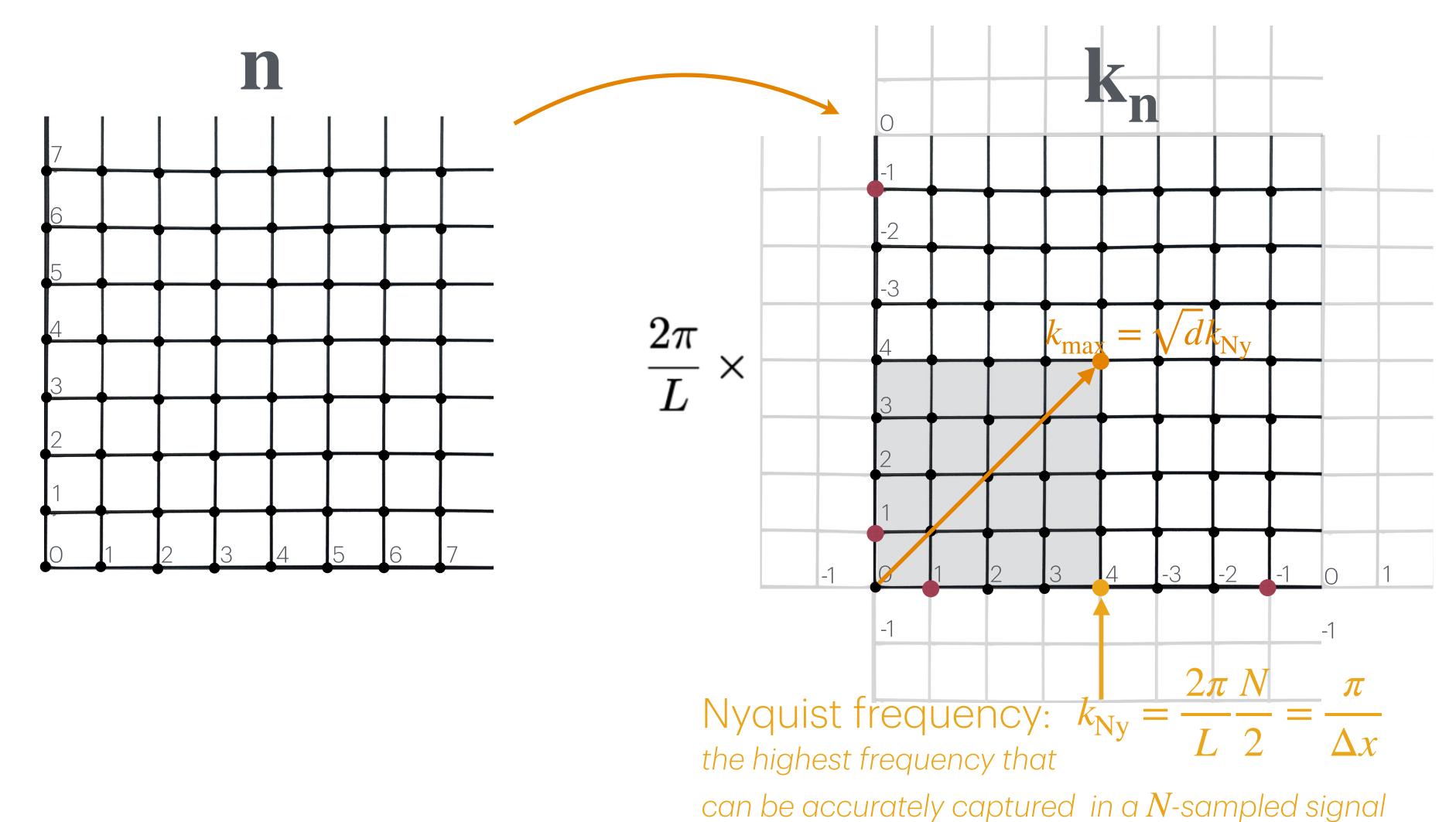
$$N = 8$$



k-mapping in 2D

$$k_i(\mathbf{n}) = \frac{2\pi}{L} \times \begin{cases} n_i, & 0 \le n_i \le \lfloor \frac{N}{2} \rfloor, \\ n_i - N, & \lfloor \frac{N}{2} \rfloor < n_i \le N - 1, \end{cases}$$

$$N = 8$$



Discrete Fourier Transform

• For some field sampled on discrete lattice sites $f_{\mathbf{m}} \equiv f(\mathbf{x_m})$ with $\mathbf{x_m} = \Delta x \, \mathbf{m}$ the **Discrete Fourier Transform (DFT)** is defined as:

Discrete Fourier transform

$$\tilde{f}_{\mathbf{n}} = \frac{V}{N^3} \sum_{\mathbf{m} \in \mathcal{N}} f_{\mathbf{m}} e^{-i\frac{2\pi}{N} \mathbf{n} \cdot \mathbf{m}}$$

Inverse transform

$$f_{\mathbf{m}} = \frac{1}{V} \sum_{\mathbf{n} \in \mathcal{N}} \tilde{f}_{\mathbf{n}} e^{i\frac{2\pi}{N} \mathbf{n} \cdot \mathbf{m}}$$

Map from lattice
$$\mathbf{n}$$

$$k_i(\mathbf{n}) = \frac{2\pi}{L} \times \begin{cases} n_i, & 0 \le n_i \le \left\lfloor \frac{N}{2} \right\rfloor, \\ n_i - N, & \left\lfloor \frac{N}{2} \right\rfloor < n_i \le N - 1, \end{cases}$$

From Continuum to Lattice

Continuum

$$\tilde{f}(\mathbf{k}) = \int_{\mathbb{R}^3} d^3x \, f(\mathbf{x}) \, e^{-i\mathbf{k}\cdot\mathbf{x}} \qquad \longrightarrow \qquad \tilde{f}_{\mathbf{n}} = \frac{V}{N^3} \sum_{\mathbf{m} \in \mathcal{N}} f_{\mathbf{m}} \, e^{-i\frac{2\pi}{N} \, \mathbf{n} \cdot \mathbf{m}}$$

$$\left\langle \tilde{f}(\mathbf{k})\tilde{f}^*(\mathbf{k}')\right\rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} - \mathbf{k}') P(\mathbf{k}) \qquad \longrightarrow \qquad \left\langle \tilde{f}_{\mathbf{n}}\tilde{f}_{\mathbf{n}'}^*\right\rangle = V P_{\mathbf{n}} \, \delta_{\mathbf{n}\mathbf{n}'}$$

$$P(\mathbf{k}) \sim \frac{1}{V_{\mathbb{R}}} \left\langle |\tilde{f}(\mathbf{k})|^2 \right\rangle$$
 \longrightarrow $P_{\mathbf{n}} = \frac{1}{V} \left\langle |\tilde{f}_{\mathbf{n}}|^2 \right\rangle$

$$P(k) \approx \frac{1}{4\pi} \int d\Omega_{\hat{\mathbf{k}}} \frac{|\tilde{f}(\mathbf{k})|^2}{V_{\mathbb{R}}} \Big|_{|\mathbf{k}|=k} \qquad \qquad P(k) \approx \hat{P}(k) \equiv \frac{1}{N_k} \sum_{k_{\mathbf{n}} \in \mathrm{shell}(k)} \frac{|\tilde{f}_{\mathbf{n}}|^2}{V},$$

Lattice

$$\tilde{f}_{\mathbf{n}} = \frac{V}{N^3} \sum_{\mathbf{m} \in \mathcal{N}} f_{\mathbf{m}} e^{-i\frac{2\pi}{N} \mathbf{n} \cdot \mathbf{m}}$$

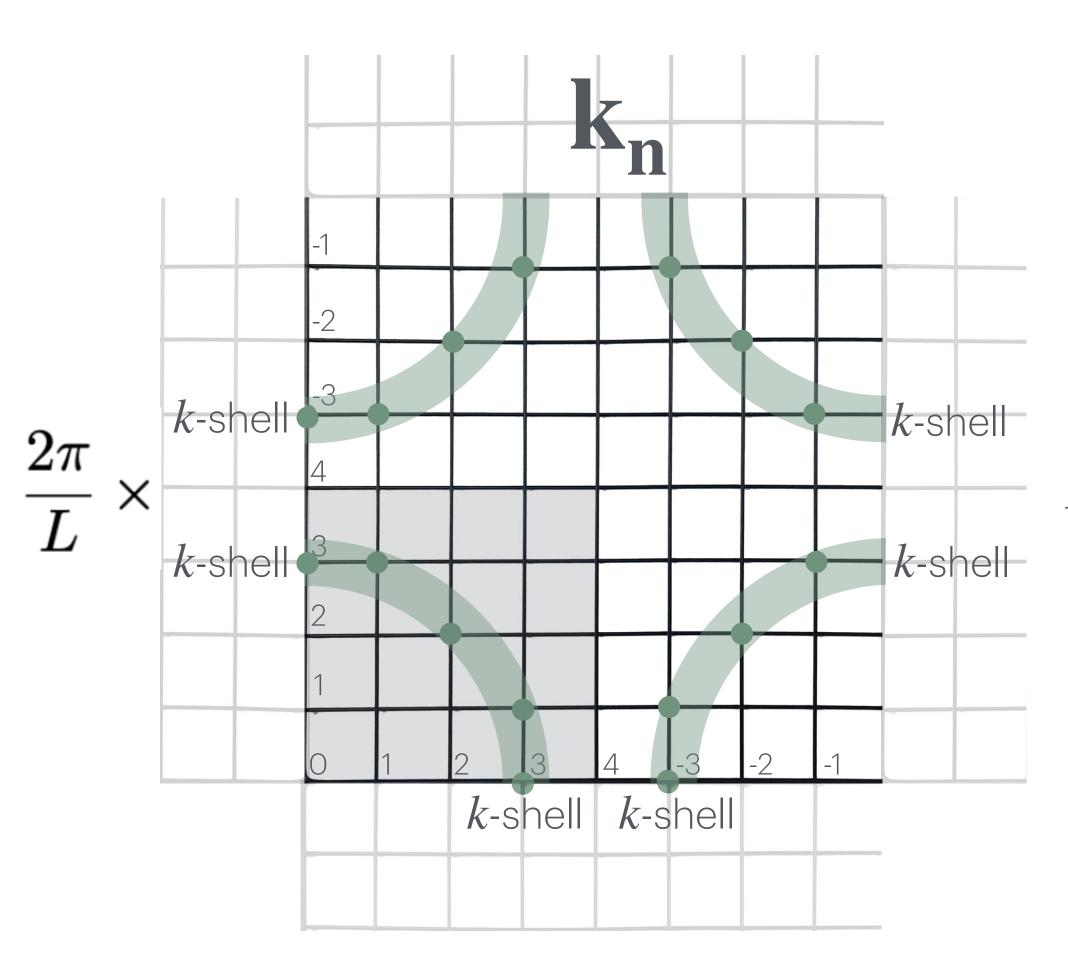
$$\left\langle \tilde{f}_{\mathbf{n}}\tilde{f}_{\mathbf{n}'}^{*}\right\rangle =V\,P_{\mathbf{n}}\,\delta_{\mathbf{n}\mathbf{n}'}$$

$$P_{\mathbf{n}} = \frac{1}{V} \left\langle |\tilde{f}_{\mathbf{n}}|^2 \right\rangle$$

$$P(k) \approx \widehat{P}(k) \equiv \frac{1}{N_k} \sum_{k_{\mathbf{n}} \in \text{shell}(k)} \frac{|\widetilde{f}_{\mathbf{n}}|^2}{V},$$

k-shell binning in 2D

$$P(k) \approx \widehat{P}(k) \equiv \frac{1}{N_k} \sum_{k_{\mathbf{n}} \in \text{shell}(k)} \frac{|\widetilde{f}_{\mathbf{n}}|^2}{V},$$



$$N_k = 16$$

• Pick your favorite DFT library to compute $ilde{f}_{f n}$ from $f_{f m}\equiv f({f x}_{f m})$ (Check normalization!)

- Pick your favorite DFT library to compute $ilde{f}_{\mathbf{n}}$ from $f_{\mathbf{m}} \equiv f(\mathbf{x}_{\mathbf{m}})$ (Check normalization!)
- Map \mathbf{n} to $\mathbf{k_n}$ using adequate mapping, e.g. $k_i(\mathbf{n}) = \frac{2\pi}{L} \times \begin{cases} n_i, & 0 \le n_i \le \left\lfloor \frac{N}{2} \right\rfloor, \\ n_i N, & \left\lfloor \frac{N}{2} \right\rfloor < n_i \le N 1, \end{cases}$

- Pick your favorite DFT library to compute $f_{\mathbf{n}}$ from $f_{\mathbf{m}} \equiv f(\mathbf{x}_{\mathbf{m}})$ (Check normalization!)
- Map \mathbf{n} to $\mathbf{k_n}$ using adequate mapping, e.g. $k_i(\mathbf{n}) = \frac{2\pi}{L} \times \begin{cases} n_i, & 0 \le n_i \le \left\lfloor \frac{N}{2} \right\rfloor, \\ n_i N, & \left\lfloor \frac{N}{2} \right\rfloor < n_i \le N 1. \end{cases}$ Bin $\mathbf{k_n}$ into shells k and compute the average of all $\frac{|\tilde{f}_{\mathbf{n}}|^2}{V}$ falling into that shell: $\frac{1}{N_k} \sum_{k_n \in \mathrm{shell}(k)} \frac{|\tilde{f}_{\mathbf{n}}|^2}{V}$

- Pick your favorite DFT library to compute $ilde{f}_{f n}$ from $f_{f m}\equiv f({f x}_{f m})$ (Check normalization!)
- Map \mathbf{n} to $\mathbf{k_n}$ using adequate mapping, e.g. $k_i(\mathbf{n}) = \frac{2\pi}{L} \times \begin{cases} n_i, & 0 \le n_i \le \left\lfloor \frac{N}{2} \right\rfloor, \\ n_i N, & \left\lfloor \frac{N}{2} \right\rfloor < n_i \le N 1, \end{cases}$
- Bin $\mathbf{k_n}$ into shells k and compute the average of all $\frac{|\tilde{f}_{\mathbf{n}}|^2}{V}$ falling into that shell: $\frac{1}{N_k}\sum_{k_{\mathbf{n}}\in\operatorname{shell}(k)}\frac{|\tilde{f}_{\mathbf{n}}|^2}{V}$
- · Identify this average as an estimator of the Power spectrum:

$$P(k) \approx \hat{P}(k) \equiv \frac{1}{N_k} \sum_{k_{\mathbf{n}} \in \text{shell}(k)} \frac{|\tilde{f}_{\mathbf{n}}|^2}{V},$$

• Hence: Very simple and quick to compute Power Spectra on the Lattice!

Case study: the velocity spectrum

- We consider a velocity field $\mathbf{u}(\mathbf{x})$ with Fourier transform: $\tilde{u}_i(\mathbf{k}) = \int d^3x \, u_i(\mathbf{x}) \, e^{-i\mathbf{k}\cdot\mathbf{x}}$
- Define the Power Spectrum Tensor $P_{ij}(\mathbf{k})$: $\langle \tilde{u}_i(\mathbf{k}) \, \tilde{u}_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} \mathbf{k}') \, P_{ij}(\mathbf{k})$.
- The kinetic energy density (per unit mass) is the variance of the velocity field:

$$K = \frac{1}{2} \langle u^2 \rangle = \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} P_{ii}(\mathbf{k}), \quad \text{with } P_{ii}(\mathbf{k}) = \sum_{i=1}^3 P_{ii}(\mathbf{k})$$

Assume isotropy:

$$K = \frac{1}{2} \int_0^\infty \frac{4\pi k^2}{(2\pi)^3} P_{ii}(k) dk = \int_0^\infty \underbrace{\left[\frac{k^2}{4\pi^2} P_{ii}(k)\right]}_{E_u(k)} dk$$

and define the kinetic energy spectrum

$$E_u(k) = \frac{k^2}{4\pi^2} P_{ii}(k), \qquad K = \int_0^\infty E_u(k) dk,$$

$$E_u(k) = \frac{k^2}{4\pi^2} P_{ii}(k), \qquad K = \int_0^\infty E_u(k) dk,$$

Longitudinal and transverse decomposition

- Any vector field can be decomposed into a longitudinal (curl-free) part and a transverse (divergence-free) part.
- In Fourier space:

Longitudinal: project onto $\hat{\mathbf{k}}$ $ilde{u}_{L,i}(\mathbf{k}) = \hat{k}_i (\hat{k}_j ilde{u}_j(\mathbf{k}))$

Transverse: subtract longitudinal from total

$$\tilde{u}_{T,i}(\mathbf{k}) = \tilde{u}_i(\mathbf{k}) - \tilde{u}_{L,i}(\mathbf{k}) = (\delta_{ij} - \hat{k}_i \hat{k}_j) \tilde{u}_j(\mathbf{k})$$

- The Power Spectrum tensor splits into L and T parts: $P_{mn}(\mathbf{k}) = P_L(k)\,\hat{k}_m\hat{k}_n + P_T(k)\,\left(\delta_{mn} \hat{k}_m\hat{k}_n\right)$ $P_{ii}(k) = P_L(k) + 2P_T(k)$
- The total kinetic energy can now be computed as: $K = \int_0^\infty \left[E_L(k) + E_L(k) \right]$

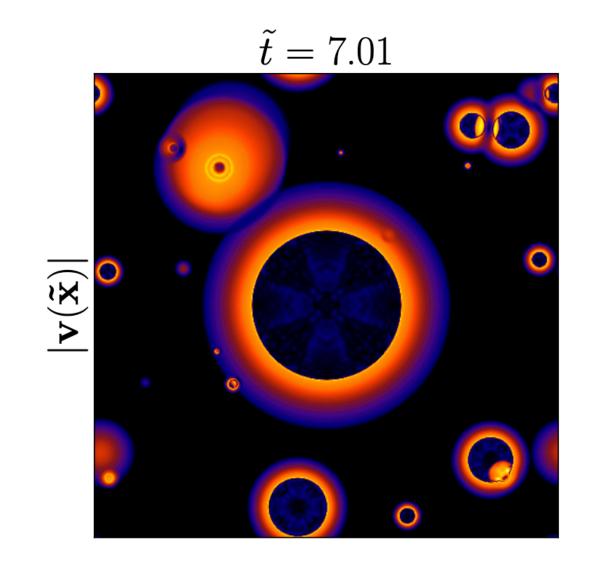
$$K = \int_0^\infty \left[E_L(k) + E_T(k) \right] dk$$

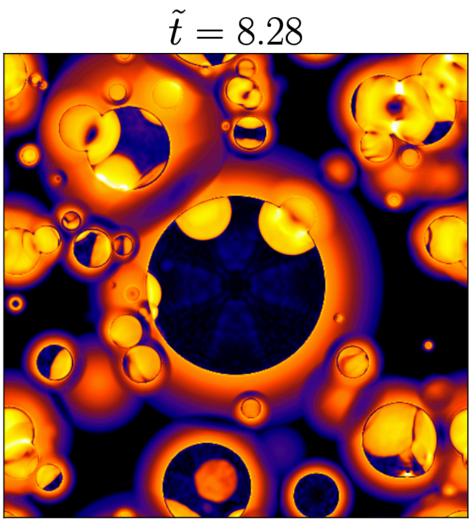
with

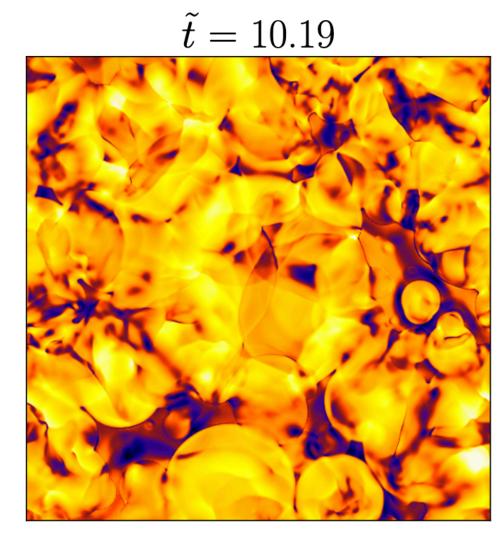
$$E_L(k) = \frac{k^2}{4\pi^2} P_L(k), \qquad E_T(k) = \frac{k^2}{2\pi^2} P_T(k).$$

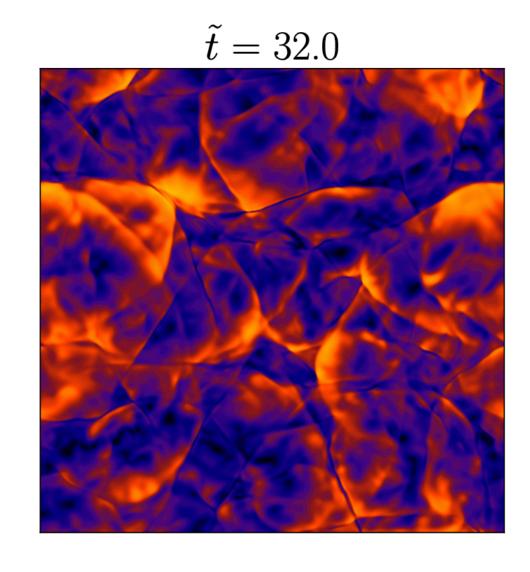
May include factor of 2 here

Eg: Growth of vorticity









Uncollided sound-shells

Only compressional modes

$$E_T(k) = E_u(k) - E_L(k) = 0$$

Plane-wave expansion

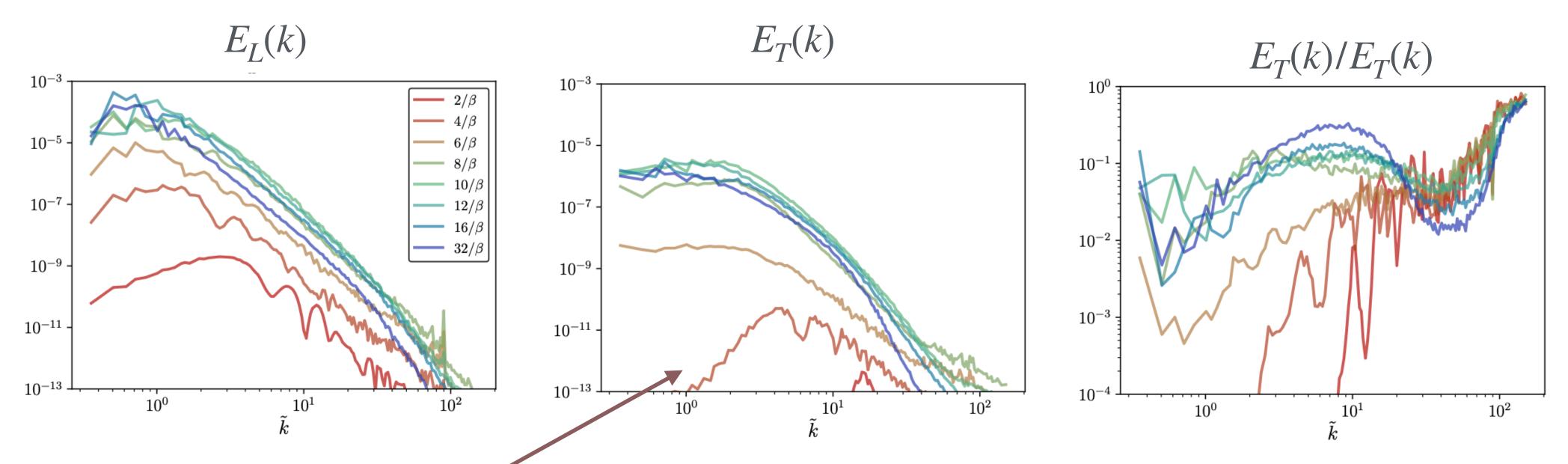
Linear evolution: non interacting Sound-waves

$$E_T(k) = 0$$

$$E_T(k) \neq 0$$

 $E_T(k) \neq 0$ is a tracer of non-linear evolution and turbulence.

Eg: Growth of vorticity



- $E_T(k)$ initially vanishing, much smaller than the compressional component $E_L(k)$
- Transfer of energy from longitudinal to transverse modes
- Transverse velocity spectrum grows with time (Generation of vorticity, evolution is non-linear)

Hence: *Velocity spectra* (Longitudinal and Transverse) are tools to understand the dynamics, energy transport, non-linear evolution, vorticity/turbulence, etc.