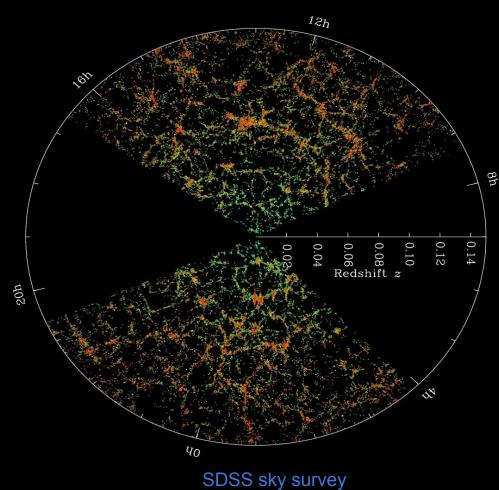
The Inflationary Era in Cosmology: Studying Axion Inflation with the Pencil Code

Ramkishor Sharma

INSPIRE Faculty Fellow School of Physics University of Hyderabad

Pencil Code School and User meeting 2025 Accelerating the Pencil Code

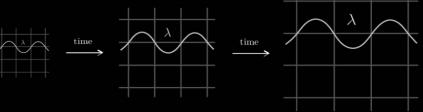
Outline


- Introduction to hot Big Bang model
- Motivation to have an inflationary era
 - Horizon Problem
 - Flatness Problem
- Inflation : A solution to these problem
- A simple model of inflation
- Axion Inflation model
- Implementation of Axion-U(1) model in Pencil code
 - backreact_infl.f90 and disp_current.f90
 - klein_gorden.f90
- Other studies in the context of inflation using Pencil Code (axionSU2back.f90)

Length scales

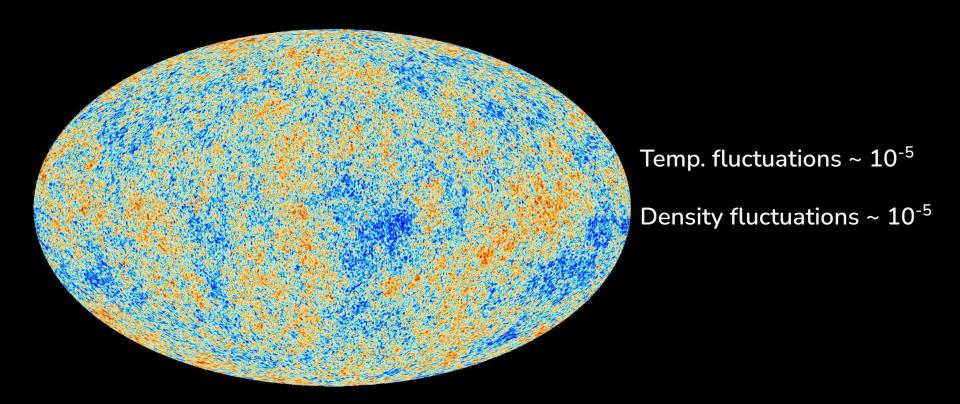
- Size of milky way ~ 20 Kpc ~ 10⁹A.U. ~ 10⁴ size of solar system ~ 6 * 10⁴ light year
- Size of a galaxy cluster ~ 1Mpc

Distribution of the galaxies


- Density contrast ~ 10⁵
- At around 100 Mpc Universe is homogeneous
 Yadav et al 2005
- Universe is expanding with time

Edwin Hubble 1929

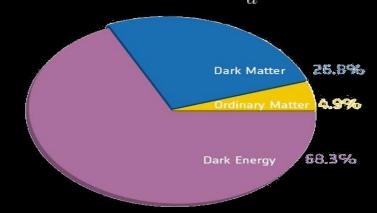
- Horizon ~ 4000 Mpc
- Distance between two points

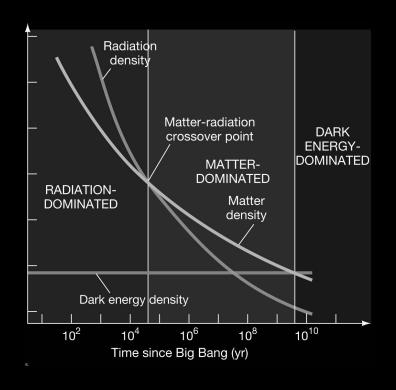

$$dx^2 + dy^2$$

• In the case of expanding $a^2(t)(dx^2+dy^2)$

Arxiv: 1607.01030

Cosmic Microwave Background Radiation (CMBR)




ESA: Planck mission

Cosmology

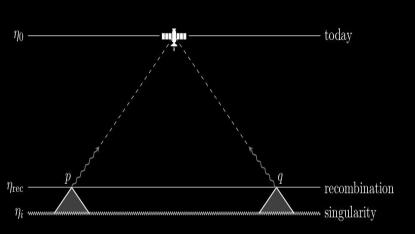
- At large scale, Universe is homogeneous and Isotropic
- Universe is expanding
- Matter density $\propto rac{1}{a^3}$

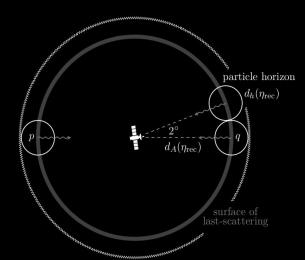
Radiation density $\propto \frac{1}{a^4}$ and T $\propto \frac{1}{a}$

ESA: Planck's mission

Hot Big Bang phase

- Explains cosmic expansion, nucleosynthesis, and CMB formation.
- Predicts a hot, dense early universe.
- However, leaves some questions unanswered:
 - Why is the universe so uniform on large scales? (Horizon Problem)
 - Why is the universe so flat today? (Flatness problem)


$$egin{split} ds^2 &= dt^2 - a^2(t)(dx^2 + dy^2 + dz^2) \ &= a^2(\eta)(d\eta^2 - (dx^2 + dy^2 + dz^2)) \end{split}$$


Using Einstein equation for perfect fluid, one gets

$$egin{split} \left(rac{\dot{a}}{a}
ight)^2 &\equiv H^2 = rac{8\pi G}{3}(
ho_r +
ho_m +
ho_\Lambda) \ H^2 &= rac{8\pi G}{3}igg(
ho_{r,0}igg(rac{a_0}{a}igg)^4 +
ho_{m,0}igg(rac{a_0}{a}igg)^3 +
ho_{\Lambda,0}igg) \end{split}$$

Horizon Problem

- The CMB have approximately same temperature across the sky ($\Delta T/T \sim 10^{-5}$).
- For Photons, $ds=0\Rightarrow dx=d\eta=\frac{d\ln a}{aH}$ Opposite regions of the sky were never in causal contact at recombination.
- Light couldn't have traveled between them since the Big Bang $_-^{
 m Distance\ travelled}, d_h = \int rac{d \ln a}{aH}$ to thermalize.
- Yet, they have the same temperature why?

Daniel Baumann, Cosmology, Cambridge University Press, 2022

Flatness Problem

Friedmann equation:

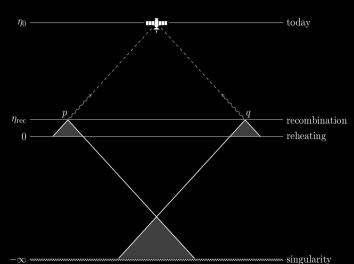
$$H^2+rac{k}{a^2}=rac{8\pi G}{3}
ho$$
 $H^2=rac{8\pi G}{3}
ho_c$

$$\Omega_k = rac{
ho-
ho_c}{
ho_c} = rac{a_0 H_0^2}{a^2 H^2} \Omega_{k,0}$$

- Small deviation from flatness ($\Omega\equiv \overline{rac{
 ho}{
 ho_c}}$ =1) grows with time in standard expansion.
- From CMB observations ($|\Omega_{k,0}| < 0.005$)
- Implies extreme fine-tuning of initial conditions.

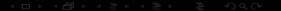
$$egin{split} \left(rac{\dot{a}}{a}
ight)^2 &\equiv H^2 = rac{8\pi G}{3}(
ho_r +
ho_m +
ho_\Lambda) \ H^2 &= rac{8\pi G}{3}igg(
ho_{r,0}igg(rac{a_0}{a}igg)^4 +
ho_{m,0}igg(rac{a_0}{a}igg)^3 +
ho_{\Lambda,0}igg) \end{split}$$

Solution to these problems: Inflationary Era

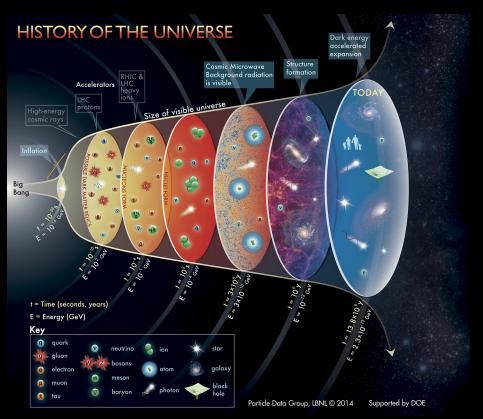

Decreasing Hubble radius can resolve the Horizon and Flatness Problem

$$rac{d}{dt}(aH)^{-1} < 0 \Rightarrow \ddot{a} > 0 \quad ext{(accelerated expansion)}$$

$$\frac{\ddot{a}}{a} = \frac{-4\pi G}{3}(
ho + 3p)$$


accelerated expansion implies $\rho + 3p < 0 \implies p < -\rho/3$

Before the Hot Big Bang



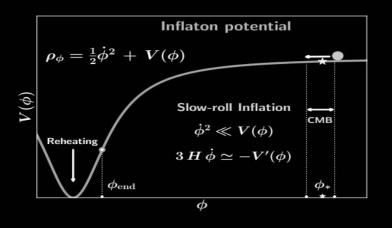
Inflation

- ► An era of exponential expansion of space in the early Universe.
- Introduced to solve Horizon and Flatness problems.
- Also provides a natural explanation to initial density fluctuations.
- ► These initial density fluctuations arise due to the quantum mechanical nature of the field which causes inflation or some other field present during inflation.
- ► As different modes cross the horizon, the nature of fluctuations over these modes becomes classical.

A brief history of the Universe

Probes for Early Universe

- via photons
 - CMB anisotropies, spectral distortions
- via neutrinos
- via gravitational waves
 - by direct detections of
 GWs
 Lecture by Chiara
 - by constraints on extra degrees of freedom from CMB


A simple model of inflation

Standard – A single canonical scalar fie minimally coupled to gravity

$$\rho_{_{\phi}} = \frac{1}{2} \dot{\phi}^2 + V(\phi), \ p_{_{\phi}} = \frac{1}{2} \dot{\phi}^2 - V(\phi)$$

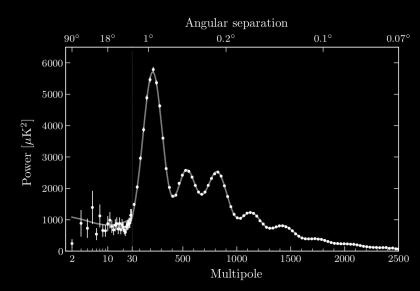
And Einstein's equations imply

$$\begin{split} H^2 &= \left(\frac{\dot{a}}{a}\right)^2 = \left(\frac{8\pi G}{3}\right)\rho_{\phi},\\ \dot{H} &= -\frac{1}{2m_p^2}\dot{\phi}^2\\ \ddot{a} &= -\left(\frac{4\pi G}{3}\right)\left(\rho_{\phi} + 3\,p_{\phi}\right)\\ \ddot{a} &= H^2\left(1 - \epsilon_H\right) \end{split}$$

Condition for Inflation

$$\epsilon_{_H} = -\frac{\dot{H}}{H^2} < 1 \Rightarrow \dot{\phi}^2 < V(\phi)$$

The dynamics of the scalar field is governed by


$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

Slide from Swagat S. Mishra's talk

Testing inflationary models

The inhomogeneous Universe

- Quantum fluctuations of the inflaton field are stretched to cosmic scales.
- These fluctuations produce curvature (scalar) and gravitational wave (tensor) perturbations.
- Scalar perturbations seed structure formation (galaxies, CMB anisotropies).
- Tensor perturbations produce B-mode polarization in the CMB.

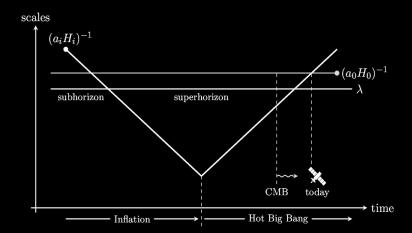
Testing inflationary models

The inhomogeneous Universe

$$ds^2 = a^2(\eta) \left[-(1 + 2\Psi(\vec{x}, \eta)d\eta^2 + ((1 - 2\Phi)\delta_{ij} + 2h_{ij})dx^i dx^j
ight]$$

Evolution of scalar perturbation

$$(a\delta\phi)''+igg(k^2-rac{z''}{z}igg)(a\delta\phi)==0 \quad ext{where, } z=rac{aar\phi'}{\mathcal{H}}$$


Gauge Invariant scalar perturbation

$$\zeta = \Phi + rac{H\delta\phi}{\dot{\phi}}$$

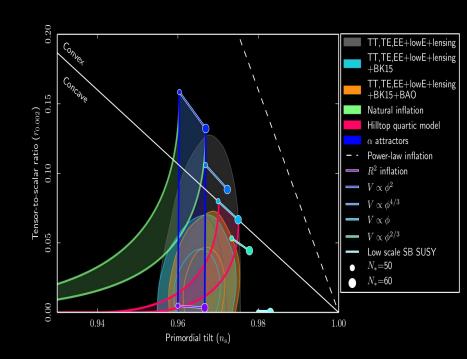
Power spectrum of scalar perturbations:

- The spectral index n_s characterizes the scale dependence of perturbations.
- The tensor-to-scalar ratio: $r = P_t / P_z$.

Testing inflationary models

Inhomogeneous Universe

$$ds^2=a^2(\eta)\left[-(1+2\Psi(ec{x},\eta)d\eta^2+((1-2\Phi)\delta_{ij}+2h_{ij})dx^idx^j
ight]$$

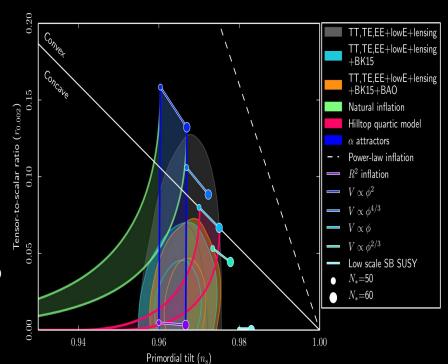

Gauge Invariant scalar perturbation

$$\zeta = \Phi + rac{H\delta\phi}{\dot{\phi}}$$

Power spectrum of scalar perturbations:

$$P_{\zeta} \propto k^{n_s-1}$$

- The spectral index n_s characterizes the scale dependence of perturbations.
- The tensor-to-scalar ratio: $r = P_t / P_{\zeta}$.


Axion-U(1) Inflation

- Flatness of the potential is protected due to shift symmetry
- First model suggested by the name Natural Inflation

K. Freese, J. A. Frieman and A. V. Olinto, PRL 1990

$$V(\phi) = \Lambda^4 \left(1 + \cos\left(\frac{\phi}{f}\right) \right)$$

 Various scenarios has been suggested to make it compatible with the CMB observations

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{16\pi} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\alpha}{4f} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

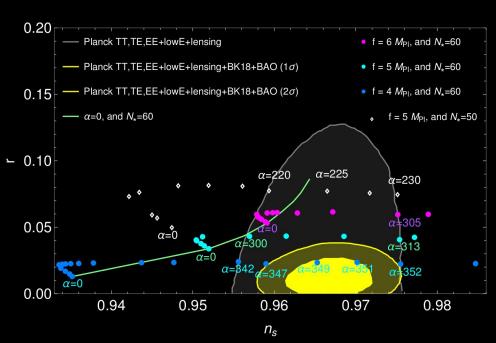
Planck results 2018

Axion-U(1) Inflation: dynamics

By neglecting the inhomogeneity of axion

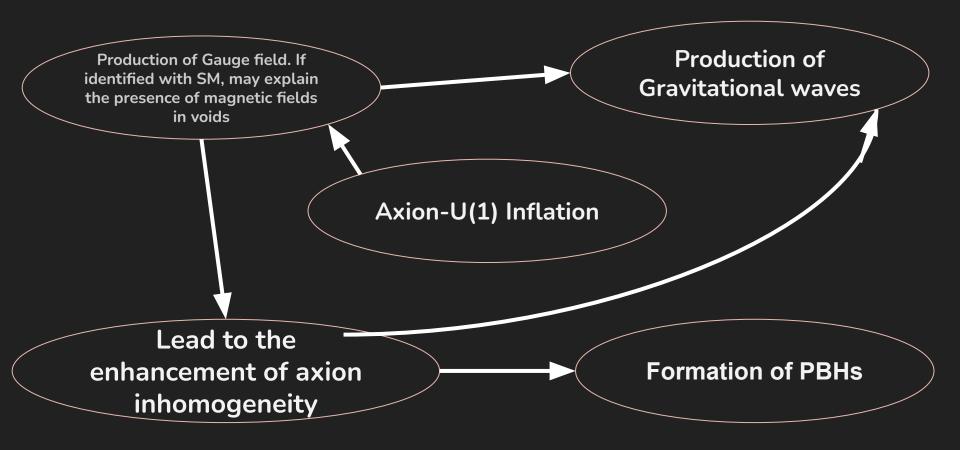
$$\left(\partial_{\eta}^{2} + k^{2} \mp 2\xi(\mathcal{H}\eta)\frac{k}{\eta}\right)A_{k}^{\pm} = 0, \quad \text{where} \quad \xi = -\frac{\alpha}{2f}\frac{\phi'}{\mathcal{H}}$$

$$A_k^+ \simeq \frac{1}{\sqrt{2\,k}} \left(\frac{k}{2\,\xi\,a\,H} \right)^{1/4} e^{\pi\xi - 2\sqrt{2\xi k/(aH)}}, \quad \text{For, } (8\xi)^{-1} \le k/(aH) \le 2\xi$$

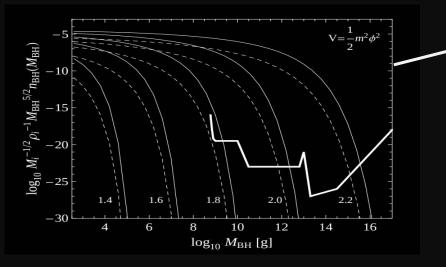

For,
$$(8\xi)^{-1} \le k/(aH) \le 2\xi$$

Axion-U(1) Inflation: dynamics

By neglecting the inhomogeneity of axion

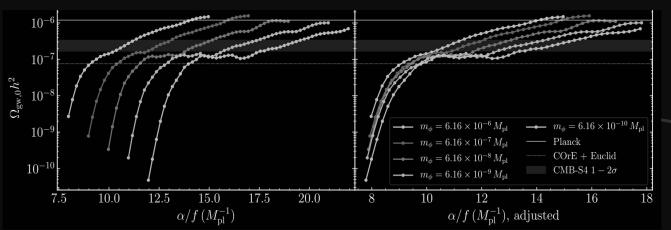

$$\left(\partial_{\eta}^2 + k^2 \mp 2\xi(\mathcal{H}\eta)\frac{k}{\eta}\right)A_k^{\pm} = 0\,, \qquad ext{where} \qquad \xi = -rac{lpha}{2f}\,rac{\phi'}{\mathcal{H}}$$

$$A_k^+ \simeq \frac{1}{\sqrt{2 \, k}} \left(\frac{k}{2 \, \xi \, a \, H} \right)^{1/4} e^{\pi \xi - 2\sqrt{2 \xi k / (aH)}},$$



K. Alam, K. Dutta and N. Jamana 2024

Axion-U(1) Inflation: Phenomenology


Constraints on the coupling between axion and gauge field

Assume chi square PDF

$$\frac{\alpha}{f} < 130/m_{\rm pl}$$

E. Bugaev and P. Klimai, PRD 2014

Adshead et al, PRD 2020 Adshead el al, PRL 2020

$$\frac{lpha}{f} < 70/m_{
m pl}$$

$$m_{\phi} = 6.16 \times 10^{-6} M_{\rm p}$$

Lattice simulations of Axion-U(1) Inflation

We use pencil code to solve the axion-U(1) setup.
 Equations are begin solved

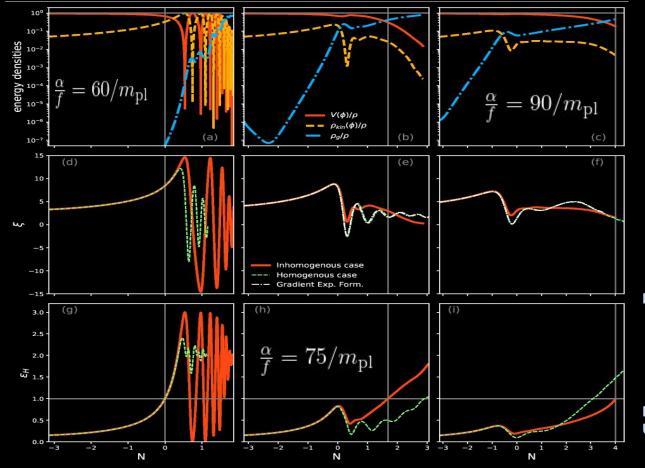
backreact_infl.f90

$$\phi'' + 2\mathcal{H}\phi' - \nabla^2\phi + a^2\frac{dV}{d\phi} = \frac{\alpha}{f} \frac{1}{a^2} \mathbf{E} \cdot \mathbf{B},$$

$$\mathbf{A}'' - \mathbf{\nabla} A_0' - \nabla^2 \mathbf{A} + \mathbf{\nabla} (\mathbf{\nabla} \cdot \mathbf{A}) - \frac{\alpha}{f} \left(\phi' \mathbf{B} + \mathbf{\nabla} \phi \times \mathbf{E} \right) = 0,$$

Along with the FLRW background.

disp_current.f90


$$\mathcal{H}^2 = \frac{8\pi}{3m_{\rm pl}^2}a^2\rho$$
 backreact_infl.f90
$$\left\langle \frac{1}{2}\frac{\phi'^2}{a^2} + \frac{1}{2}\frac{(\nabla\phi)^2}{a^2} + V(\phi) + \frac{E^2 + B^2}{2a^4} \right\rangle$$

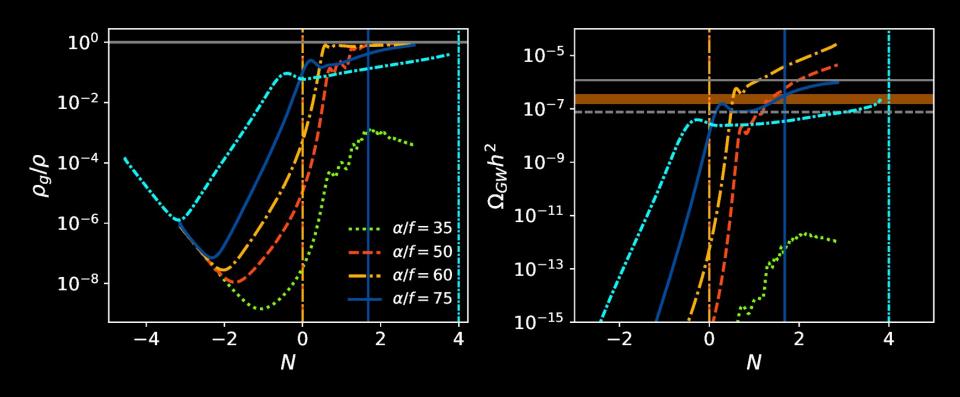
Check for constraint equation

- We have two gauge choices to be used
 - Lorentz Gauge (set llongitudinalE=.false. And llorenz_gauge_disp=.true.)
 - \circ Weyl Gauge, $A_0=0$ (by default this one is selected)

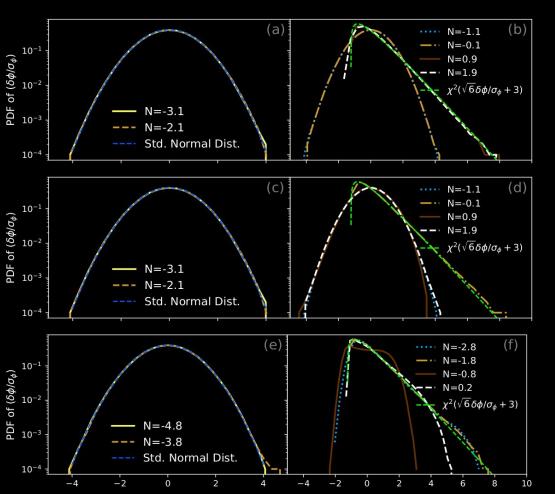
$$C.\,E. = \Big\langle rac{
abla \cdot E - rac{lpha}{f}
abla \phi \cdot B}{\sqrt{(
abla \cdot E)^2 + (rac{lpha}{f}
abla \phi \cdot B)^2}} \Big
angle.$$

Axion-U(1) Inflation: dynamics from lattice simulations

RS, AB, KS, AV, Arxiv 2411.04854


AB - Axel Brandenburg

KS – Kandaswamy Subramanian


AV - Alex Vikman

D. G. Figueroa, J. Lizarraga, A. Urio and J. Urrestilla, PRL 2023

Energy budget of gauge field and produced GWs

PDF of the axion fluctuations

RS, AB, KS, AV, Arxiv 2411.04854

A. Caravano, E. Komatsu, K. D. Lozanov and J. Weller, PRD 2022

Extended duration of inflation due to backreaction

α_{Λ}	$\Delta\mathcal{N}_{ m br}$			
	linear (77)	power-law (78)	linear (79)	power-law (80)
20	6.21±0.07	$6.03^{+0.61}_{-0.57}$	5.9 ± 0.1	$5.85^{+0.45}_{-0.45}$
22.5	8.46 ± 0.09	$8.04^{+0.90}_{-0.83}$	7.9 ± 0.2	$8.88^{+0.81}_{-0.77}$
25	10.7 ± 0.1	$10.0^{+1.21}_{-1.08}$	$9.9 {\pm} 0.2$	$12.06^{+1.20}_{-1.12}$
30	15.2 ± 0.2	$13.9^{+1.80}_{-1.67}$	13.8 ± 0.3	$18.75^{+2.11}_{-1.94}$
35	19.7 ± 0.2	$17.6_{-2.16}^{+2.53}$	17.8 ± 0.4	$25.76_{-2.84}^{+3.15}$

D. G. Figueroa, J. Lizarraga, Nicolas Loayza, A. Urio and J. Urrestilla, Arxiv: 2411.16368

Other Implementations

axion-SU(2) dynamics during inflation OI, EIS, RS and AB, JCAP 2024 &AB, OI, EIS, RS, JCAP
 2024

$$S=\int d^4x \sqrt{-{
m det}\,g_{\mu
u}}\left[rac{M_{
m pl}^2}{2}R-rac{1}{2}(\partial\phi)^2-V(\phi)-rac{1}{2}(\partial\chi)^2-U(\chi)-rac{1}{4}F_{\mu
u}^aF^{a\,\mu
u}+rac{\lambda\chi}{4f}F_{\mu
u}^a ilde{F}^{a\,\mu
u}
ight],$$

- Not the full lattice simulation but solve the background and first order equation in Fourier space
- Explore the parameter space where the backreaction of the first order part on the background evolution is important
- Schwinger effect in axion inflation on a lattice

OI, EIS, AB Arxiv:2506.20538

 In this study, the authors have including charge currents derived for homogeneous gauge fields

> OI- Oksana larygina EIS - Evangelos I. Sfakianakis

Other Implementations

axion-SU(2) dynamics during inflation of, EIS, RS and AB, JCAP 2024 &AB, OI, EIS, RS, JCAP 2024

$$S = \int d^4 x \sqrt{-\det g_{\mu\nu}} \left[rac{M_{
m pl}^2}{2} R - rac{1}{2} (\partial \phi)^2 - V(\phi) - rac{1}{2} (\partial \chi)^2 - U(\chi) - rac{1}{4} F_{\mu\nu}^a F^{a\,\mu
u} + rac{\lambda \chi}{4f} F_{\mu
u}^a ilde{F}^{a\,\mu
u}
ight],$$

- Not the full lattice simulation but solve the background and first order equation in Fourier space
- Explore the parameter space where the backreaction of the first order part on the background evolution is important
- Schwinger effect in axion inflation on a lattice

OI, EIS, AB Arxiv:2506.20538

In this study, the authors have including charge currents derived for homogeneous gauge fields

> OI- Oksana larygina EIS - Evangelos I. Sfakianakis

